MakeItFrom.com
Menu (ESC)

C95400 Bronze vs. EN 2.4856 Nickel

C95400 bronze belongs to the copper alloys classification, while EN 2.4856 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C95400 bronze and the bottom bar is EN 2.4856 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 200
210
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.1 to 16
28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
79
Tensile Strength: Ultimate (UTS), MPa 600 to 710
880
Tensile Strength: Yield (Proof), MPa 240 to 360
430

Thermal Properties

Latent Heat of Fusion, J/g 230
330
Maximum Temperature: Mechanical, °C 230
1000
Melting Completion (Liquidus), °C 1040
1480
Melting Onset (Solidus), °C 1030
1430
Specific Heat Capacity, J/kg-K 440
440
Thermal Conductivity, W/m-K 59
10
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 14
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 27
80
Density, g/cm3 8.2
8.6
Embodied Carbon, kg CO2/kg material 3.2
14
Embodied Energy, MJ/kg 53
190
Embodied Water, L/kg 390
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 75
200
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 560
440
Stiffness to Weight: Axial, points 7.7
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 20 to 24
28
Strength to Weight: Bending, points 19 to 22
24
Thermal Diffusivity, mm2/s 16
2.7
Thermal Shock Resistance, points 21 to 25
29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0 to 0.4
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 83 to 87
0 to 0.5
Iron (Fe), % 3.0 to 5.0
0 to 5.0
Manganese (Mn), % 0 to 0.5
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0 to 1.5
58 to 68.8
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.4
Residuals, % 0 to 0.5
0