MakeItFrom.com
Menu (ESC)

C95400 Bronze vs. SAE-AISI 1026 Steel

C95400 bronze belongs to the copper alloys classification, while SAE-AISI 1026 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95400 bronze and the bottom bar is SAE-AISI 1026 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 200
140 to 160
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.1 to 16
17 to 27
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 600 to 710
500 to 550
Tensile Strength: Yield (Proof), MPa 240 to 360
270 to 470

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 59
52
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 27
1.8
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 3.2
1.4
Embodied Energy, MJ/kg 53
18
Embodied Water, L/kg 390
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 75
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 560
200 to 580
Stiffness to Weight: Axial, points 7.7
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 20 to 24
18 to 20
Strength to Weight: Bending, points 19 to 22
18 to 19
Thermal Diffusivity, mm2/s 16
14
Thermal Shock Resistance, points 21 to 25
16 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0.22 to 0.28
Copper (Cu), % 83 to 87
0
Iron (Fe), % 3.0 to 5.0
98.7 to 99.18
Manganese (Mn), % 0 to 0.5
0.6 to 0.9
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Residuals, % 0 to 0.5
0