MakeItFrom.com
Menu (ESC)

C95400 Bronze vs. C63600 Bronze

Both C95400 bronze and C63600 bronze are copper alloys. They have 89% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95400 bronze and the bottom bar is C63600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 8.1 to 16
30 to 66
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 600 to 710
410 to 540
Tensile Strength: Yield (Proof), MPa 240 to 360
150 to 260

Thermal Properties

Latent Heat of Fusion, J/g 230
230
Maximum Temperature: Mechanical, °C 230
210
Melting Completion (Liquidus), °C 1040
1030
Melting Onset (Solidus), °C 1030
980
Specific Heat Capacity, J/kg-K 440
410
Thermal Conductivity, W/m-K 59
57
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
12
Electrical Conductivity: Equal Weight (Specific), % IACS 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 27
30
Density, g/cm3 8.2
8.6
Embodied Carbon, kg CO2/kg material 3.2
2.8
Embodied Energy, MJ/kg 53
45
Embodied Water, L/kg 390
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 75
98 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 560
100 to 300
Stiffness to Weight: Axial, points 7.7
7.3
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 20 to 24
13 to 18
Strength to Weight: Bending, points 19 to 22
14 to 17
Thermal Diffusivity, mm2/s 16
16
Thermal Shock Resistance, points 21 to 25
15 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
3.0 to 4.0
Arsenic (As), % 0
0 to 0.15
Copper (Cu), % 83 to 87
93 to 96.3
Iron (Fe), % 3.0 to 5.0
0 to 0.15
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.5
0 to 0.15
Silicon (Si), % 0
0.7 to 1.3
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.5
0 to 0.5