MakeItFrom.com
Menu (ESC)

C95400 Bronze vs. C72900 Copper-nickel

Both C95400 bronze and C72900 copper-nickel are copper alloys. They have 77% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C95400 bronze and the bottom bar is C72900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 8.1 to 16
6.0 to 20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
45
Tensile Strength: Ultimate (UTS), MPa 600 to 710
870 to 1080
Tensile Strength: Yield (Proof), MPa 240 to 360
700 to 920

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 230
210
Melting Completion (Liquidus), °C 1040
1120
Melting Onset (Solidus), °C 1030
950
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 59
29
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 27
39
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 3.2
4.6
Embodied Energy, MJ/kg 53
72
Embodied Water, L/kg 390
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 75
49 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 560
2030 to 3490
Stiffness to Weight: Axial, points 7.7
7.6
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 20 to 24
27 to 34
Strength to Weight: Bending, points 19 to 22
23 to 27
Thermal Diffusivity, mm2/s 16
8.6
Thermal Shock Resistance, points 21 to 25
31 to 38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0
Copper (Cu), % 83 to 87
74.1 to 78
Iron (Fe), % 3.0 to 5.0
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 0.5
0 to 0.3
Nickel (Ni), % 0 to 1.5
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.5
0 to 0.3