MakeItFrom.com
Menu (ESC)

C95400 Bronze vs. C82000 Copper

Both C95400 bronze and C82000 copper are copper alloys. They have 85% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C95400 bronze and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 8.1 to 16
8.0 to 20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
45
Tensile Strength: Ultimate (UTS), MPa 600 to 710
350 to 690
Tensile Strength: Yield (Proof), MPa 240 to 360
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 230
220
Maximum Temperature: Mechanical, °C 230
220
Melting Completion (Liquidus), °C 1040
1090
Melting Onset (Solidus), °C 1030
970
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 59
260
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
45
Electrical Conductivity: Equal Weight (Specific), % IACS 14
46

Otherwise Unclassified Properties

Base Metal Price, % relative 27
60
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 3.2
5.0
Embodied Energy, MJ/kg 53
77
Embodied Water, L/kg 390
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 75
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 560
80 to 1120
Stiffness to Weight: Axial, points 7.7
7.5
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 20 to 24
11 to 22
Strength to Weight: Bending, points 19 to 22
12 to 20
Thermal Diffusivity, mm2/s 16
76
Thermal Shock Resistance, points 21 to 25
12 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 83 to 87
95.2 to 97.4
Iron (Fe), % 3.0 to 5.0
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.5
0 to 0.2
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.5

Comparable Variants