MakeItFrom.com
Menu (ESC)

C95400 Bronze vs. C82400 Copper

Both C95400 bronze and C82400 copper are copper alloys. They have 86% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C95400 bronze and the bottom bar is C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 8.1 to 16
1.0 to 20
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
45
Tensile Strength: Ultimate (UTS), MPa 600 to 710
500 to 1030
Tensile Strength: Yield (Proof), MPa 240 to 360
260 to 970

Thermal Properties

Latent Heat of Fusion, J/g 230
230
Maximum Temperature: Mechanical, °C 230
270
Melting Completion (Liquidus), °C 1040
1000
Melting Onset (Solidus), °C 1030
900
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 59
130
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
25
Electrical Conductivity: Equal Weight (Specific), % IACS 14
26

Otherwise Unclassified Properties

Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 3.2
8.9
Embodied Energy, MJ/kg 53
140
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 75
10 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 560
270 to 3870
Stiffness to Weight: Axial, points 7.7
7.6
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 20 to 24
16 to 33
Strength to Weight: Bending, points 19 to 22
16 to 26
Thermal Diffusivity, mm2/s 16
39
Thermal Shock Resistance, points 21 to 25
17 to 36

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.2 to 0.65
Copper (Cu), % 83 to 87
96 to 98.2
Iron (Fe), % 3.0 to 5.0
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.5
0 to 0.2
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.5

Comparable Variants