MakeItFrom.com
Menu (ESC)

C95410 Bronze vs. AISI 310MoLN Stainless Steel

C95410 bronze belongs to the copper alloys classification, while AISI 310MoLN stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C95410 bronze and the bottom bar is AISI 310MoLN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 200
190
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.1 to 13
28
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Tensile Strength: Ultimate (UTS), MPa 620 to 740
610
Tensile Strength: Yield (Proof), MPa 260 to 380
290

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1040
1420
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 59
14
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
28
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 3.3
5.0
Embodied Energy, MJ/kg 54
70
Embodied Water, L/kg 390
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57 to 64
140
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 630
200
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 21 to 25
21
Strength to Weight: Bending, points 20 to 22
20
Thermal Diffusivity, mm2/s 16
3.7
Thermal Shock Resistance, points 22 to 26
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 83 to 85.5
0
Iron (Fe), % 3.0 to 5.0
45.2 to 53.8
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
1.6 to 2.6
Nickel (Ni), % 1.5 to 2.5
20.5 to 23.5
Nitrogen (N), % 0
0.090 to 0.15
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.5
0