MakeItFrom.com
Menu (ESC)

C95520 Bronze vs. EN 1.4945 Stainless Steel

C95520 bronze belongs to the copper alloys classification, while EN 1.4945 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95520 bronze and the bottom bar is EN 1.4945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
200 to 220
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.6
19 to 34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 970
640 to 740
Tensile Strength: Yield (Proof), MPa 530
290 to 550

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Maximum Temperature: Mechanical, °C 240
920
Melting Completion (Liquidus), °C 1070
1490
Melting Onset (Solidus), °C 1020
1440
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 40
14
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
30
Density, g/cm3 8.2
8.1
Embodied Carbon, kg CO2/kg material 3.6
5.0
Embodied Energy, MJ/kg 58
73
Embodied Water, L/kg 390
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
130 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 1210
210 to 760
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 33
22 to 25
Strength to Weight: Bending, points 27
20 to 22
Thermal Diffusivity, mm2/s 11
3.7
Thermal Shock Resistance, points 33
14 to 16

Alloy Composition

Aluminum (Al), % 10.5 to 11.5
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0 to 0.050
15.5 to 17.5
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.5 to 81.3
0
Iron (Fe), % 4.0 to 5.5
57.9 to 65.7
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 1.5
Nickel (Ni), % 4.2 to 6.0
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.25
0
Tungsten (W), % 0
2.5 to 3.5
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0