MakeItFrom.com
Menu (ESC)

C95520 Bronze vs. Grade Ti-Pd8A Titanium

C95520 bronze belongs to the copper alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95520 bronze and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
200
Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.6
13
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 44
40
Tensile Strength: Ultimate (UTS), MPa 970
500
Tensile Strength: Yield (Proof), MPa 530
430

Thermal Properties

Latent Heat of Fusion, J/g 240
420
Maximum Temperature: Mechanical, °C 240
320
Melting Completion (Liquidus), °C 1070
1660
Melting Onset (Solidus), °C 1020
1610
Specific Heat Capacity, J/kg-K 450
540
Thermal Conductivity, W/m-K 40
21
Thermal Expansion, µm/m-K 18
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 12
6.9

Otherwise Unclassified Properties

Density, g/cm3 8.2
4.5
Embodied Carbon, kg CO2/kg material 3.6
49
Embodied Energy, MJ/kg 58
840
Embodied Water, L/kg 390
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
65
Resilience: Unit (Modulus of Resilience), kJ/m3 1210
880
Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 33
31
Strength to Weight: Bending, points 27
31
Thermal Diffusivity, mm2/s 11
8.6
Thermal Shock Resistance, points 33
39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10.5 to 11.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.050
0
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.5 to 81.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 4.0 to 5.5
0 to 0.25
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 4.2 to 6.0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
98.8 to 99.9
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0 to 0.4