MakeItFrom.com
Menu (ESC)

C95520 Bronze vs. C70260 Copper

Both C95520 bronze and C70260 copper are copper alloys. They have 80% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C95520 bronze and the bottom bar is C70260 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.6
9.5 to 19
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 44
44
Tensile Strength: Ultimate (UTS), MPa 970
520 to 760
Tensile Strength: Yield (Proof), MPa 530
410 to 650

Thermal Properties

Latent Heat of Fusion, J/g 240
220
Maximum Temperature: Mechanical, °C 240
200
Melting Completion (Liquidus), °C 1070
1060
Melting Onset (Solidus), °C 1020
1040
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 40
160
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
40 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 12
40 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 29
31
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 58
43
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
46 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 1210
710 to 1810
Stiffness to Weight: Axial, points 8.0
7.3
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 33
16 to 24
Strength to Weight: Bending, points 27
16 to 21
Thermal Diffusivity, mm2/s 11
45
Thermal Shock Resistance, points 33
18 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10.5 to 11.5
0
Chromium (Cr), % 0 to 0.050
0
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.5 to 81.3
95.8 to 98.8
Iron (Fe), % 4.0 to 5.5
0
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 4.2 to 6.0
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.15
0.2 to 0.7
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0 to 0.5