MakeItFrom.com
Menu (ESC)

C95520 Bronze vs. C87800 Brass

Both C95520 bronze and C87800 brass are copper alloys. They have 79% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C95520 bronze and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.6
25
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 44
42
Tensile Strength: Ultimate (UTS), MPa 970
590
Tensile Strength: Yield (Proof), MPa 530
350

Thermal Properties

Latent Heat of Fusion, J/g 240
260
Maximum Temperature: Mechanical, °C 240
170
Melting Completion (Liquidus), °C 1070
920
Melting Onset (Solidus), °C 1020
820
Specific Heat Capacity, J/kg-K 450
410
Thermal Conductivity, W/m-K 40
28
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 12
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
27
Density, g/cm3 8.2
8.3
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 58
44
Embodied Water, L/kg 390
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1210
540
Stiffness to Weight: Axial, points 8.0
7.4
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 33
20
Strength to Weight: Bending, points 27
19
Thermal Diffusivity, mm2/s 11
8.3
Thermal Shock Resistance, points 33
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10.5 to 11.5
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.050
0
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.5 to 81.3
80 to 84.2
Iron (Fe), % 4.0 to 5.5
0 to 0.15
Lead (Pb), % 0 to 0.030
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.5
0 to 0.15
Nickel (Ni), % 4.2 to 6.0
0 to 0.2
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.15
3.8 to 4.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 0 to 0.3
12 to 16
Residuals, % 0 to 0.5
0 to 0.5