MakeItFrom.com
Menu (ESC)

C95520 Bronze vs. S43932 Stainless Steel

C95520 bronze belongs to the copper alloys classification, while S43932 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95520 bronze and the bottom bar is S43932 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
160
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.6
25
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 970
460
Tensile Strength: Yield (Proof), MPa 530
230

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 240
890
Melting Completion (Liquidus), °C 1070
1440
Melting Onset (Solidus), °C 1020
1400
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 40
23
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
12
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 58
40
Embodied Water, L/kg 390
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
96
Resilience: Unit (Modulus of Resilience), kJ/m3 1210
140
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 33
17
Strength to Weight: Bending, points 27
17
Thermal Diffusivity, mm2/s 11
6.3
Thermal Shock Resistance, points 33
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 10.5 to 11.5
0 to 0.15
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.050
17 to 19
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.5 to 81.3
0
Iron (Fe), % 4.0 to 5.5
76.7 to 83
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 4.2 to 6.0
0 to 0.5
Niobium (Nb), % 0
0.2 to 0.75
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0.2 to 0.75
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0