MakeItFrom.com
Menu (ESC)

C95600 Bronze vs. ASTM Grade HT Steel

C95600 bronze belongs to the copper alloys classification, while ASTM grade HT steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95600 bronze and the bottom bar is ASTM grade HT steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 15
4.6
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 500
500
Tensile Strength: Yield (Proof), MPa 230
270

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Maximum Temperature: Mechanical, °C 210
1010
Melting Completion (Liquidus), °C 1000
1390
Melting Onset (Solidus), °C 980
1340
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 39
12
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
31
Density, g/cm3 8.3
8.0
Embodied Carbon, kg CO2/kg material 3.0
5.4
Embodied Energy, MJ/kg 50
76
Embodied Water, L/kg 360
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
19
Resilience: Unit (Modulus of Resilience), kJ/m3 230
180
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 11
3.2
Thermal Shock Resistance, points 18
12

Alloy Composition

Aluminum (Al), % 6.0 to 8.0
0
Carbon (C), % 0
0.35 to 0.75
Chromium (Cr), % 0
15 to 19
Copper (Cu), % 88 to 92.2
0
Iron (Fe), % 0
38.2 to 51.7
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.25
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.8 to 3.2
0 to 2.5
Sulfur (S), % 0
0 to 0.040
Residuals, % 0 to 1.0
0