MakeItFrom.com
Menu (ESC)

C95600 Bronze vs. EN 1.4107 Stainless Steel

C95600 bronze belongs to the copper alloys classification, while EN 1.4107 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95600 bronze and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 15
18 to 21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 500
620 to 700
Tensile Strength: Yield (Proof), MPa 230
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 210
740
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 980
1410
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 39
27
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
7.5
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.1
Embodied Energy, MJ/kg 50
30
Embodied Water, L/kg 360
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 230
420 to 840
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 17
22 to 25
Strength to Weight: Bending, points 17
21 to 22
Thermal Diffusivity, mm2/s 11
7.2
Thermal Shock Resistance, points 18
22 to 25

Alloy Composition

Aluminum (Al), % 6.0 to 8.0
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
11.5 to 12.5
Copper (Cu), % 88 to 92.2
0 to 0.3
Iron (Fe), % 0
83.8 to 87.2
Manganese (Mn), % 0
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.25
0.8 to 1.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.8 to 3.2
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Vanadium (V), % 0
0 to 0.080
Residuals, % 0 to 1.0
0