MakeItFrom.com
Menu (ESC)

C95700 Bronze vs. AISI 201 Stainless Steel

C95700 bronze belongs to the copper alloys classification, while AISI 201 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95700 bronze and the bottom bar is AISI 201 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
200
Elongation at Break, % 23
4.6 to 51
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 47
77
Tensile Strength: Ultimate (UTS), MPa 680
650 to 1450
Tensile Strength: Yield (Proof), MPa 310
300 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 220
880
Melting Completion (Liquidus), °C 990
1410
Melting Onset (Solidus), °C 950
1370
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 26
12
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.3
2.6
Embodied Energy, MJ/kg 54
38
Embodied Water, L/kg 360
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
61 to 340
Resilience: Unit (Modulus of Resilience), kJ/m3 390
230 to 2970
Stiffness to Weight: Axial, points 8.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 23
23 to 52
Strength to Weight: Bending, points 21
22 to 37
Thermal Diffusivity, mm2/s 3.3
4.0
Thermal Shock Resistance, points 21
14 to 32

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.0 to 8.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 71 to 78.5
0
Iron (Fe), % 2.0 to 4.0
67.5 to 75
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 11 to 14
5.5 to 7.5
Nickel (Ni), % 1.5 to 3.0
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0