MakeItFrom.com
Menu (ESC)

C95700 Bronze vs. AISI 304L Stainless Steel

C95700 bronze belongs to the copper alloys classification, while AISI 304L stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C95700 bronze and the bottom bar is AISI 304L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
200
Elongation at Break, % 23
6.7 to 46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 47
77
Tensile Strength: Ultimate (UTS), MPa 680
540 to 1160
Tensile Strength: Yield (Proof), MPa 310
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 220
540
Melting Completion (Liquidus), °C 990
1450
Melting Onset (Solidus), °C 950
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 12
16
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 26
16
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.3
3.1
Embodied Energy, MJ/kg 54
44
Embodied Water, L/kg 360
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
71 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 390
92 to 1900
Stiffness to Weight: Axial, points 8.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 23
19 to 41
Strength to Weight: Bending, points 21
19 to 31
Thermal Diffusivity, mm2/s 3.3
4.2
Thermal Shock Resistance, points 21
12 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.0 to 8.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 71 to 78.5
0
Iron (Fe), % 2.0 to 4.0
65 to 74
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 11 to 14
0 to 2.0
Nickel (Ni), % 1.5 to 3.0
8.0 to 12
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0