MakeItFrom.com
Menu (ESC)

C95700 Bronze vs. C84000 Brass

Both C95700 bronze and C84000 brass are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 76% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C95700 bronze and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
110
Elongation at Break, % 23
27
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 47
42
Tensile Strength: Ultimate (UTS), MPa 680
250
Tensile Strength: Yield (Proof), MPa 310
140

Thermal Properties

Latent Heat of Fusion, J/g 230
190
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 990
1040
Melting Onset (Solidus), °C 950
940
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 12
72
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
16
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
17

Otherwise Unclassified Properties

Base Metal Price, % relative 26
30
Density, g/cm3 8.2
8.6
Embodied Carbon, kg CO2/kg material 3.3
3.0
Embodied Energy, MJ/kg 54
49
Embodied Water, L/kg 360
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
58
Resilience: Unit (Modulus of Resilience), kJ/m3 390
83
Stiffness to Weight: Axial, points 8.5
7.2
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 23
8.2
Strength to Weight: Bending, points 21
10
Thermal Diffusivity, mm2/s 3.3
22
Thermal Shock Resistance, points 21
9.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.0 to 8.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Copper (Cu), % 71 to 78.5
82 to 89
Iron (Fe), % 2.0 to 4.0
0 to 0.4
Lead (Pb), % 0 to 0.030
0 to 0.090
Manganese (Mn), % 11 to 14
0 to 0.010
Nickel (Ni), % 1.5 to 3.0
0.5 to 2.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.7