MakeItFrom.com
Menu (ESC)

C95700 Bronze vs. S45500 Stainless Steel

C95700 bronze belongs to the copper alloys classification, while S45500 stainless steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is C95700 bronze and the bottom bar is S45500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 23
3.4 to 11
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 47
75
Tensile Strength: Ultimate (UTS), MPa 680
1370 to 1850
Tensile Strength: Yield (Proof), MPa 310
1240 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 220
760
Melting Completion (Liquidus), °C 990
1440
Melting Onset (Solidus), °C 950
1400
Specific Heat Capacity, J/kg-K 440
470
Thermal Expansion, µm/m-K 18
11

Otherwise Unclassified Properties

Base Metal Price, % relative 26
17
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 3.3
3.8
Embodied Energy, MJ/kg 54
57
Embodied Water, L/kg 360
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
45 to 190
Stiffness to Weight: Axial, points 8.5
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 23
48 to 65
Strength to Weight: Bending, points 21
35 to 42
Thermal Shock Resistance, points 21
48 to 64

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.0 to 8.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 71 to 78.5
1.5 to 2.5
Iron (Fe), % 2.0 to 4.0
71.5 to 79.2
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 11 to 14
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 1.5 to 3.0
7.5 to 9.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0
0.8 to 1.4
Residuals, % 0 to 0.5
0