MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. EN 1.0345 Steel

C95800 bronze belongs to the copper alloys classification, while EN 1.0345 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is EN 1.0345 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 22
27
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 660
420
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 36
49
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.1
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.4
1.5
Embodied Energy, MJ/kg 55
19
Embodied Water, L/kg 370
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
96
Resilience: Unit (Modulus of Resilience), kJ/m3 310
140
Stiffness to Weight: Axial, points 7.9
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 22
15
Strength to Weight: Bending, points 20
16
Thermal Diffusivity, mm2/s 9.9
13
Thermal Shock Resistance, points 23
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 9.5
0.020 to 0.024
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 79 to 83.2
0 to 0.3
Iron (Fe), % 3.5 to 4.5
97.2 to 99.38
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
0.6 to 1.2
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 4.0 to 5.0
0 to 0.3
Niobium (Nb), % 0
0 to 0.020
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.020
Residuals, % 0 to 0.5
0