MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. EN 1.4584 Stainless Steel

C95800 bronze belongs to the copper alloys classification, while EN 1.4584 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is EN 1.4584 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 22
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
79
Tensile Strength: Ultimate (UTS), MPa 660
500
Tensile Strength: Yield (Proof), MPa 270
210

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 1040
1390
Specific Heat Capacity, J/kg-K 440
460
Thermal Conductivity, W/m-K 36
17
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
31
Density, g/cm3 8.3
8.1
Embodied Carbon, kg CO2/kg material 3.4
5.7
Embodied Energy, MJ/kg 55
78
Embodied Water, L/kg 370
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 310
110
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 22
17
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 9.9
4.5
Thermal Shock Resistance, points 23
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 79 to 83.2
1.0 to 3.0
Iron (Fe), % 3.5 to 4.5
41.7 to 52
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 4.0 to 5.0
24 to 26
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Residuals, % 0 to 0.5
0