MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. EN 1.4597 Stainless Steel

C95800 bronze belongs to the copper alloys classification, while EN 1.4597 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is EN 1.4597 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 22
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 660
680
Tensile Strength: Yield (Proof), MPa 270
330

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 230
860
Melting Completion (Liquidus), °C 1060
1400
Melting Onset (Solidus), °C 1040
1350
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 36
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
11
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.4
2.5
Embodied Energy, MJ/kg 55
36
Embodied Water, L/kg 370
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
250
Resilience: Unit (Modulus of Resilience), kJ/m3 310
280
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 9.9
4.1
Thermal Shock Resistance, points 23
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 79 to 83.2
2.0 to 3.5
Iron (Fe), % 3.5 to 4.5
63 to 76.4
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
6.5 to 9.0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 4.0 to 5.0
0 to 3.0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 2.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0