MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. EN 1.4806 Stainless Steel

C95800 bronze belongs to the copper alloys classification, while EN 1.4806 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is EN 1.4806 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 22
6.8
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
75
Tensile Strength: Ultimate (UTS), MPa 660
470
Tensile Strength: Yield (Proof), MPa 270
250

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Maximum Temperature: Mechanical, °C 230
1000
Melting Completion (Liquidus), °C 1060
1380
Melting Onset (Solidus), °C 1040
1340
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 36
12
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
31
Density, g/cm3 8.3
8.0
Embodied Carbon, kg CO2/kg material 3.4
5.4
Embodied Energy, MJ/kg 55
76
Embodied Water, L/kg 370
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
27
Resilience: Unit (Modulus of Resilience), kJ/m3 310
160
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 22
16
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 9.9
3.1
Thermal Shock Resistance, points 23
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 79 to 83.2
0
Iron (Fe), % 3.5 to 4.5
40.4 to 48.7
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 4.0 to 5.0
34 to 36
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0