MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. Grade CX2M Nickel

C95800 bronze belongs to the copper alloys classification, while grade CX2M nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is grade CX2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
220
Elongation at Break, % 22
45
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
84
Tensile Strength: Ultimate (UTS), MPa 660
550
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 230
330
Maximum Temperature: Mechanical, °C 230
990
Melting Completion (Liquidus), °C 1060
1500
Melting Onset (Solidus), °C 1040
1450
Specific Heat Capacity, J/kg-K 440
430
Thermal Conductivity, W/m-K 36
10
Thermal Expansion, µm/m-K 17
12

Otherwise Unclassified Properties

Base Metal Price, % relative 29
65
Density, g/cm3 8.3
8.7
Embodied Carbon, kg CO2/kg material 3.4
12
Embodied Energy, MJ/kg 55
160
Embodied Water, L/kg 370
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
210
Resilience: Unit (Modulus of Resilience), kJ/m3 310
220
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 22
18
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 9.9
2.7
Thermal Shock Resistance, points 23
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 9.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 79 to 83.2
0
Iron (Fe), % 3.5 to 4.5
0 to 1.5
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
15 to 16.5
Nickel (Ni), % 4.0 to 5.0
56.4 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Residuals, % 0 to 0.5
0