MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. C17510 Copper

Both C95800 bronze and C17510 copper are copper alloys. They have 83% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 22
5.4 to 37
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
44
Tensile Strength: Ultimate (UTS), MPa 660
310 to 860
Tensile Strength: Yield (Proof), MPa 270
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 230
220
Maximum Temperature: Mechanical, °C 230
220
Melting Completion (Liquidus), °C 1060
1070
Melting Onset (Solidus), °C 1040
1030
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 36
210
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
23 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 29
49
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 3.4
4.2
Embodied Energy, MJ/kg 55
65
Embodied Water, L/kg 370
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 310
64 to 2410
Stiffness to Weight: Axial, points 7.9
7.4
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 22
9.7 to 27
Strength to Weight: Bending, points 20
11 to 23
Thermal Diffusivity, mm2/s 9.9
60
Thermal Shock Resistance, points 23
11 to 30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 9.5
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 79 to 83.2
95.9 to 98.4
Iron (Fe), % 3.5 to 4.5
0 to 0.1
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0.8 to 1.5
0
Nickel (Ni), % 4.0 to 5.0
1.4 to 2.2
Silicon (Si), % 0 to 0.1
0 to 0.2
Residuals, % 0 to 0.5
0 to 0.5