MakeItFrom.com
Menu (ESC)

C95800 Bronze vs. C90400 Bronze

Both C95800 bronze and C90400 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 82% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C95800 bronze and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 22
24
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
41
Tensile Strength: Ultimate (UTS), MPa 660
310
Tensile Strength: Yield (Proof), MPa 270
180

Thermal Properties

Latent Heat of Fusion, J/g 230
190
Maximum Temperature: Mechanical, °C 230
170
Melting Completion (Liquidus), °C 1060
990
Melting Onset (Solidus), °C 1040
850
Specific Heat Capacity, J/kg-K 440
370
Thermal Conductivity, W/m-K 36
75
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
12
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 29
34
Density, g/cm3 8.3
8.7
Embodied Carbon, kg CO2/kg material 3.4
3.5
Embodied Energy, MJ/kg 55
56
Embodied Water, L/kg 370
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
65
Resilience: Unit (Modulus of Resilience), kJ/m3 310
150
Stiffness to Weight: Axial, points 7.9
7.0
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 22
10
Strength to Weight: Bending, points 20
12
Thermal Diffusivity, mm2/s 9.9
23
Thermal Shock Resistance, points 23
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.5 to 9.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Copper (Cu), % 79 to 83.2
86 to 89
Iron (Fe), % 3.5 to 4.5
0 to 0.4
Lead (Pb), % 0 to 0.030
0 to 0.090
Manganese (Mn), % 0.8 to 1.5
0 to 0.010
Nickel (Ni), % 4.0 to 5.0
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.7