MakeItFrom.com
Menu (ESC)

C95820 Bronze vs. AISI 302 Stainless Steel

C95820 bronze belongs to the copper alloys classification, while AISI 302 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C95820 bronze and the bottom bar is AISI 302 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 15
4.5 to 46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 730
580 to 1430
Tensile Strength: Yield (Proof), MPa 310
230 to 1100

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 230
710
Melting Completion (Liquidus), °C 1080
1420
Melting Onset (Solidus), °C 1020
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 38
16
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
15
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.5
3.0
Embodied Energy, MJ/kg 56
42
Embodied Water, L/kg 380
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
59 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 400
140 to 3070
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
21 to 51
Strength to Weight: Bending, points 22
20 to 36
Thermal Diffusivity, mm2/s 11
4.4
Thermal Shock Resistance, points 25
12 to 31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 9.0 to 10
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 77.5 to 82.5
0
Iron (Fe), % 4.0 to 5.0
67.9 to 75
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0 to 1.5
0 to 2.0
Nickel (Ni), % 4.5 to 5.8
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.8
0