MakeItFrom.com
Menu (ESC)

C95820 Bronze vs. EN 1.4372 Stainless Steel

C95820 bronze belongs to the copper alloys classification, while EN 1.4372 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C95820 bronze and the bottom bar is EN 1.4372 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 15
47
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 730
790
Tensile Strength: Yield (Proof), MPa 310
350

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 230
880
Melting Completion (Liquidus), °C 1080
1410
Melting Onset (Solidus), °C 1020
1370
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 38
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
12
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.5
2.6
Embodied Energy, MJ/kg 56
38
Embodied Water, L/kg 380
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
310
Resilience: Unit (Modulus of Resilience), kJ/m3 400
320
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
29
Strength to Weight: Bending, points 22
25
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 25
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 9.0 to 10
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 77.5 to 82.5
0
Iron (Fe), % 4.0 to 5.0
67.5 to 75
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0 to 1.5
5.5 to 7.5
Nickel (Ni), % 4.5 to 5.8
3.5 to 5.5
Nitrogen (N), % 0
0.050 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.020
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.8
0