MakeItFrom.com
Menu (ESC)

C95820 Bronze vs. EN 2.4879 Cast Nickel

C95820 bronze belongs to the copper alloys classification, while EN 2.4879 cast nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C95820 bronze and the bottom bar is EN 2.4879 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 15
3.4
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
80
Tensile Strength: Ultimate (UTS), MPa 730
490
Tensile Strength: Yield (Proof), MPa 310
270

Thermal Properties

Latent Heat of Fusion, J/g 230
330
Maximum Temperature: Mechanical, °C 230
1150
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1020
1400
Specific Heat Capacity, J/kg-K 440
460
Thermal Conductivity, W/m-K 38
11
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 29
55
Density, g/cm3 8.3
8.5
Embodied Carbon, kg CO2/kg material 3.5
8.3
Embodied Energy, MJ/kg 56
120
Embodied Water, L/kg 380
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
14
Resilience: Unit (Modulus of Resilience), kJ/m3 400
180
Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 24
16
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 11
2.8
Thermal Shock Resistance, points 25
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 9.0 to 10
0
Carbon (C), % 0
0.35 to 0.55
Chromium (Cr), % 0
27 to 30
Copper (Cu), % 77.5 to 82.5
0
Iron (Fe), % 4.0 to 5.0
9.4 to 20.7
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 4.5 to 5.8
47 to 50
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.020
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.8
0