MakeItFrom.com
Menu (ESC)

C96200 Copper-nickel vs. 713.0 Aluminum

C96200 copper-nickel belongs to the copper alloys classification, while 713.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C96200 copper-nickel and the bottom bar is 713.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
71
Elongation at Break, % 23
3.9 to 4.3
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 46
27
Tensile Strength: Ultimate (UTS), MPa 350
240 to 260
Tensile Strength: Yield (Proof), MPa 190
170

Thermal Properties

Latent Heat of Fusion, J/g 220
370
Maximum Temperature: Mechanical, °C 220
180
Melting Completion (Liquidus), °C 1150
630
Melting Onset (Solidus), °C 1100
610
Specific Heat Capacity, J/kg-K 390
860
Thermal Conductivity, W/m-K 45
150
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
35
Electrical Conductivity: Equal Weight (Specific), % IACS 11
100

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 8.9
3.1
Embodied Carbon, kg CO2/kg material 3.8
7.8
Embodied Energy, MJ/kg 58
150
Embodied Water, L/kg 300
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
8.7 to 9.9
Resilience: Unit (Modulus of Resilience), kJ/m3 150
210 to 220
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
45
Strength to Weight: Axial, points 11
22 to 23
Strength to Weight: Bending, points 13
28 to 29
Thermal Diffusivity, mm2/s 13
57
Thermal Shock Resistance, points 12
10 to 11

Alloy Composition

Aluminum (Al), % 0
87.6 to 92.4
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 83.6 to 90
0.4 to 1.0
Iron (Fe), % 1.0 to 1.8
0 to 1.1
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 1.5
0 to 0.6
Nickel (Ni), % 9.0 to 11
0 to 0.15
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.25