MakeItFrom.com
Menu (ESC)

C96200 Copper-nickel vs. EN 1.4303 Stainless Steel

C96200 copper-nickel belongs to the copper alloys classification, while EN 1.4303 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96200 copper-nickel and the bottom bar is EN 1.4303 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 23
13 to 49
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 350
590 to 900
Tensile Strength: Yield (Proof), MPa 190
230 to 560

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 220
940
Melting Completion (Liquidus), °C 1150
1420
Melting Onset (Solidus), °C 1100
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 45
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 36
17
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
3.2
Embodied Energy, MJ/kg 58
46
Embodied Water, L/kg 300
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
110 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 150
140 to 800
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11
21 to 32
Strength to Weight: Bending, points 13
20 to 26
Thermal Diffusivity, mm2/s 13
4.0
Thermal Shock Resistance, points 12
13 to 20

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.060
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 83.6 to 90
0
Iron (Fe), % 1.0 to 1.8
64.8 to 72
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0 to 2.0
Nickel (Ni), % 9.0 to 11
11 to 13
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015
Residuals, % 0 to 0.5
0