MakeItFrom.com
Menu (ESC)

C96200 Copper-nickel vs. C19800 Copper

Both C96200 copper-nickel and C19800 copper are copper alloys. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C96200 copper-nickel and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 23
9.0 to 12
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 46
43
Tensile Strength: Ultimate (UTS), MPa 350
430 to 550
Tensile Strength: Yield (Proof), MPa 190
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 220
210
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1150
1070
Melting Onset (Solidus), °C 1100
1050
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 45
260
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
61
Electrical Conductivity: Equal Weight (Specific), % IACS 11
62

Otherwise Unclassified Properties

Base Metal Price, % relative 36
30
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 3.8
2.8
Embodied Energy, MJ/kg 58
43
Embodied Water, L/kg 300
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 150
770 to 1320
Stiffness to Weight: Axial, points 7.8
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 11
14 to 17
Strength to Weight: Bending, points 13
14 to 17
Thermal Diffusivity, mm2/s 13
75
Thermal Shock Resistance, points 12
15 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 83.6 to 90
95.7 to 99.47
Iron (Fe), % 1.0 to 1.8
0.020 to 0.5
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0
0.1 to 1.0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 9.0 to 11
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.020
0.010 to 0.1
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.1 to 1.0
Zinc (Zn), % 0
0.3 to 1.5
Residuals, % 0 to 0.5
0 to 0.2