MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. AISI 302 Stainless Steel

C96300 copper-nickel belongs to the copper alloys classification, while AISI 302 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is AISI 302 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170 to 440
Elastic (Young's, Tensile) Modulus, GPa 130
200
Elongation at Break, % 11
4.5 to 46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 49
77
Tensile Strength: Ultimate (UTS), MPa 580
580 to 1430
Tensile Strength: Yield (Proof), MPa 430
230 to 1100

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 240
710
Melting Completion (Liquidus), °C 1200
1420
Melting Onset (Solidus), °C 1150
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 37
16
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 42
15
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
3.0
Embodied Energy, MJ/kg 76
42
Embodied Water, L/kg 290
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
59 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 720
140 to 3070
Stiffness to Weight: Axial, points 8.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18
21 to 51
Strength to Weight: Bending, points 17
20 to 36
Thermal Diffusivity, mm2/s 10
4.4
Thermal Shock Resistance, points 20
12 to 31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 72.3 to 80.8
0
Iron (Fe), % 0.5 to 1.5
67.9 to 75
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0 to 2.0
Nickel (Ni), % 18 to 22
8.0 to 10
Niobium (Nb), % 0.5 to 1.5
0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.030
Residuals, % 0 to 0.5
0