MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. AISI 439 Stainless Steel

C96300 copper-nickel belongs to the copper alloys classification, while AISI 439 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is AISI 439 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
160
Elastic (Young's, Tensile) Modulus, GPa 130
200
Elongation at Break, % 11
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 49
77
Tensile Strength: Ultimate (UTS), MPa 580
490
Tensile Strength: Yield (Proof), MPa 430
250

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 240
890
Melting Completion (Liquidus), °C 1200
1510
Melting Onset (Solidus), °C 1150
1430
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 37
25
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 42
9.0
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 5.1
2.3
Embodied Energy, MJ/kg 76
34
Embodied Water, L/kg 290
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
95
Resilience: Unit (Modulus of Resilience), kJ/m3 720
160
Stiffness to Weight: Axial, points 8.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 10
6.7
Thermal Shock Resistance, points 20
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.15
Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 72.3 to 80.8
0
Iron (Fe), % 0.5 to 1.5
77.1 to 82.8
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0 to 1.0
Nickel (Ni), % 18 to 22
0 to 0.5
Niobium (Nb), % 0.5 to 1.5
0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.1
Residuals, % 0 to 0.5
0