MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. EN 1.4305 Stainless Steel

C96300 copper-nickel belongs to the copper alloys classification, while EN 1.4305 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is EN 1.4305 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
200 to 270
Elastic (Young's, Tensile) Modulus, GPa 130
200
Elongation at Break, % 11
14 to 40
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 49
77
Tensile Strength: Ultimate (UTS), MPa 580
610 to 900
Tensile Strength: Yield (Proof), MPa 430
220 to 570

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 240
930
Melting Completion (Liquidus), °C 1200
1420
Melting Onset (Solidus), °C 1150
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 37
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 42
15
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
3.0
Embodied Energy, MJ/kg 76
42
Embodied Water, L/kg 290
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 720
120 to 830
Stiffness to Weight: Axial, points 8.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18
22 to 32
Strength to Weight: Bending, points 17
20 to 27
Thermal Diffusivity, mm2/s 10
4.0
Thermal Shock Resistance, points 20
14 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0 to 0.1
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 72.3 to 80.8
0 to 1.0
Iron (Fe), % 0.5 to 1.5
66.4 to 74.9
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0 to 2.0
Nickel (Ni), % 18 to 22
8.0 to 10
Niobium (Nb), % 0.5 to 1.5
0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0.15 to 0.35
Residuals, % 0 to 0.5
0