MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. EN 1.4335 Stainless Steel

C96300 copper-nickel belongs to the copper alloys classification, while EN 1.4335 stainless steel belongs to the iron alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is EN 1.4335 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170
Elastic (Young's, Tensile) Modulus, GPa 130
200
Elongation at Break, % 11
45
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 49
79
Tensile Strength: Ultimate (UTS), MPa 580
570
Tensile Strength: Yield (Proof), MPa 430
230

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 240
1100
Melting Completion (Liquidus), °C 1200
1410
Melting Onset (Solidus), °C 1150
1370
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 37
14
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 42
25
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.1
4.4
Embodied Energy, MJ/kg 76
62
Embodied Water, L/kg 290
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
210
Resilience: Unit (Modulus of Resilience), kJ/m3 720
130
Stiffness to Weight: Axial, points 8.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 17
19
Thermal Diffusivity, mm2/s 10
3.7
Thermal Shock Resistance, points 20
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0 to 0.020
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 72.3 to 80.8
0
Iron (Fe), % 0.5 to 1.5
49.4 to 56
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 18 to 22
20 to 22
Niobium (Nb), % 0.5 to 1.5
0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.020
0 to 0.010
Residuals, % 0 to 0.5
0