MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. EN 1.6554 Steel

C96300 copper-nickel belongs to the copper alloys classification, while EN 1.6554 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is EN 1.6554 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
230 to 280
Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 11
17 to 21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 49
73
Tensile Strength: Ultimate (UTS), MPa 580
780 to 930
Tensile Strength: Yield (Proof), MPa 430
550 to 790

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 240
420
Melting Completion (Liquidus), °C 1200
1460
Melting Onset (Solidus), °C 1150
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 37
40
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 42
3.4
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.1
1.7
Embodied Energy, MJ/kg 76
22
Embodied Water, L/kg 290
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 720
810 to 1650
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
27 to 33
Strength to Weight: Bending, points 17
24 to 27
Thermal Diffusivity, mm2/s 10
11
Thermal Shock Resistance, points 20
23 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0.23 to 0.28
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 72.3 to 80.8
0 to 0.3
Iron (Fe), % 0.5 to 1.5
94.6 to 97.3
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0.6 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 18 to 22
1.0 to 2.0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.025
Vanadium (V), % 0
0 to 0.030
Residuals, % 0 to 0.5
0