MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. EN 1.8522 Steel

C96300 copper-nickel belongs to the copper alloys classification, while EN 1.8522 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is EN 1.8522 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
220 to 380
Elastic (Young's, Tensile) Modulus, GPa 130
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 49
74
Tensile Strength: Ultimate (UTS), MPa 580
730 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 230
260
Maximum Temperature: Mechanical, °C 240
470
Melting Completion (Liquidus), °C 1200
1460
Melting Onset (Solidus), °C 1150
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 37
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 42
4.2
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
2.2
Embodied Energy, MJ/kg 76
31
Embodied Water, L/kg 290
63

Common Calculations

Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
26 to 44
Strength to Weight: Bending, points 17
23 to 33
Thermal Diffusivity, mm2/s 10
11
Thermal Shock Resistance, points 20
21 to 36

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0.29 to 0.36
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 72.3 to 80.8
0 to 0.1
Iron (Fe), % 0.5 to 1.5
93.7 to 96
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0.4 to 0.7
Molybdenum (Mo), % 0
0.7 to 1.2
Nickel (Ni), % 18 to 22
0 to 0.3
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.020
0 to 0.035
Vanadium (V), % 0
0.15 to 0.25
Residuals, % 0 to 0.5
0