MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. SAE-AISI 1017 Steel

C96300 copper-nickel belongs to the copper alloys classification, while SAE-AISI 1017 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is SAE-AISI 1017 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 130
190
Elongation at Break, % 11
20 to 30
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 49
73
Tensile Strength: Ultimate (UTS), MPa 580
420 to 460
Tensile Strength: Yield (Proof), MPa 430
220 to 390

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 240
400
Melting Completion (Liquidus), °C 1200
1470
Melting Onset (Solidus), °C 1150
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 37
53
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 42
1.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.1
1.4
Embodied Energy, MJ/kg 76
18
Embodied Water, L/kg 290
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 720
130 to 400
Stiffness to Weight: Axial, points 8.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18
15 to 16
Strength to Weight: Bending, points 17
16 to 17
Thermal Diffusivity, mm2/s 10
14
Thermal Shock Resistance, points 20
13 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0.15 to 0.2
Copper (Cu), % 72.3 to 80.8
0
Iron (Fe), % 0.5 to 1.5
99.11 to 99.55
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0.3 to 0.6
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0 to 0.050
Residuals, % 0 to 0.5
0