MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. Type 3 Niobium

C96300 copper-nickel belongs to the copper alloys classification, while Type 3 niobium belongs to the otherwise unclassified metals. There are 21 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is Type 3 niobium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
110
Elastic (Young's, Tensile) Modulus, GPa 130
100
Elongation at Break, % 11
23
Poisson's Ratio 0.33
0.4
Shear Modulus, GPa 49
38
Tensile Strength: Ultimate (UTS), MPa 580
220
Tensile Strength: Yield (Proof), MPa 430
140

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Specific Heat Capacity, J/kg-K 400
270
Thermal Conductivity, W/m-K 37
42
Thermal Expansion, µm/m-K 16
7.3

Otherwise Unclassified Properties

Density, g/cm3 8.9
8.6
Embodied Water, L/kg 290
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
44
Resilience: Unit (Modulus of Resilience), kJ/m3 720
93
Stiffness to Weight: Axial, points 8.2
6.8
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18
7.2
Strength to Weight: Bending, points 17
9.5
Thermal Diffusivity, mm2/s 10
18
Thermal Shock Resistance, points 20
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0 to 0.010
Copper (Cu), % 72.3 to 80.8
0
Hafnium (Hf), % 0
0 to 0.020
Hydrogen (H), % 0
0 to 0.0015
Iron (Fe), % 0.5 to 1.5
0 to 0.0050
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0
Molybdenum (Mo), % 0
0 to 0.010
Nickel (Ni), % 18 to 22
0 to 0.0050
Niobium (Nb), % 0.5 to 1.5
98.6 to 99.2
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.020
0
Tantalum (Ta), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.020
Tungsten (W), % 0
0 to 0.030
Zirconium (Zr), % 0
0.8 to 1.2
Residuals, % 0 to 0.5
0