MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. C18600 Copper

Both C96300 copper-nickel and C18600 copper are copper alloys. They have 77% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is C18600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
120
Elongation at Break, % 11
8.0 to 11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 49
44
Tensile Strength: Ultimate (UTS), MPa 580
520 to 580
Tensile Strength: Yield (Proof), MPa 430
500 to 520

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 240
200
Melting Completion (Liquidus), °C 1200
1090
Melting Onset (Solidus), °C 1150
1070
Specific Heat Capacity, J/kg-K 400
390
Thermal Conductivity, W/m-K 37
280
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
70
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
71

Otherwise Unclassified Properties

Base Metal Price, % relative 42
31
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 5.1
2.9
Embodied Energy, MJ/kg 76
46
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
44 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 720
1060 to 1180
Stiffness to Weight: Axial, points 8.2
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18
16 to 18
Strength to Weight: Bending, points 17
16 to 17
Thermal Diffusivity, mm2/s 10
81
Thermal Shock Resistance, points 20
19 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0
0.1 to 1.0
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 72.3 to 80.8
96.5 to 99.55
Iron (Fe), % 0.5 to 1.5
0.25 to 0.8
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0.25 to 1.5
0
Nickel (Ni), % 18 to 22
0 to 0.25
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0.050 to 0.5
Zirconium (Zr), % 0
0.050 to 0.4
Residuals, % 0 to 0.5
0 to 0.5