MakeItFrom.com
Menu (ESC)

C96300 Copper-nickel vs. C40500 Penny Bronze

Both C96300 copper-nickel and C40500 penny bronze are copper alloys. They have 77% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96300 copper-nickel and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 130
110
Elongation at Break, % 11
3.0 to 49
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 49
43
Tensile Strength: Ultimate (UTS), MPa 580
270 to 540
Tensile Strength: Yield (Proof), MPa 430
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 230
200
Maximum Temperature: Mechanical, °C 240
190
Melting Completion (Liquidus), °C 1200
1060
Melting Onset (Solidus), °C 1150
1020
Specific Heat Capacity, J/kg-K 400
380
Thermal Conductivity, W/m-K 37
160
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.0
41
Electrical Conductivity: Equal Weight (Specific), % IACS 6.1
42

Otherwise Unclassified Properties

Base Metal Price, % relative 42
30
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 5.1
2.7
Embodied Energy, MJ/kg 76
43
Embodied Water, L/kg 290
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 720
28 to 1200
Stiffness to Weight: Axial, points 8.2
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18
8.5 to 17
Strength to Weight: Bending, points 17
10 to 17
Thermal Diffusivity, mm2/s 10
48
Thermal Shock Resistance, points 20
9.5 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0
Copper (Cu), % 72.3 to 80.8
94 to 96
Iron (Fe), % 0.5 to 1.5
0 to 0.050
Lead (Pb), % 0 to 0.010
0 to 0.050
Manganese (Mn), % 0.25 to 1.5
0
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.7 to 1.3
Zinc (Zn), % 0
2.1 to 5.3
Residuals, % 0 to 0.5
0 to 0.5