MakeItFrom.com
Menu (ESC)

C96400 Copper-nickel vs. ACI-ASTM CF8C Steel

C96400 copper-nickel belongs to the copper alloys classification, while ACI-ASTM CF8C steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96400 copper-nickel and the bottom bar is ACI-ASTM CF8C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 25
40
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 51
77
Tensile Strength: Ultimate (UTS), MPa 490
530
Tensile Strength: Yield (Proof), MPa 260
260

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 260
980
Melting Completion (Liquidus), °C 1240
1420
Melting Onset (Solidus), °C 1170
1430
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 28
16
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 5.1
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 45
19
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.9
3.7
Embodied Energy, MJ/kg 87
53
Embodied Water, L/kg 280
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
180
Resilience: Unit (Modulus of Resilience), kJ/m3 250
170
Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15
19
Strength to Weight: Bending, points 16
19
Thermal Diffusivity, mm2/s 7.8
4.3
Thermal Shock Resistance, points 17
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 62.3 to 71.3
0
Iron (Fe), % 0.25 to 1.5
61.8 to 73
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 28 to 32
9.0 to 12
Niobium (Nb), % 0.5 to 1.5
0 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 2.0
Sulfur (S), % 0 to 0.020
0 to 0.040
Residuals, % 0 to 0.5
0