MakeItFrom.com
Menu (ESC)

C96400 Copper-nickel vs. AISI 405 Stainless Steel

C96400 copper-nickel belongs to the copper alloys classification, while AISI 405 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C96400 copper-nickel and the bottom bar is AISI 405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 25
22
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 51
76
Tensile Strength: Ultimate (UTS), MPa 490
470
Tensile Strength: Yield (Proof), MPa 260
200

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 260
820
Melting Completion (Liquidus), °C 1240
1530
Melting Onset (Solidus), °C 1170
1480
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 28
30
Thermal Expansion, µm/m-K 15
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 5.1
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 45
7.0
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 5.9
2.0
Embodied Energy, MJ/kg 87
28
Embodied Water, L/kg 280
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
84
Resilience: Unit (Modulus of Resilience), kJ/m3 250
100
Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15
17
Strength to Weight: Bending, points 16
17
Thermal Diffusivity, mm2/s 7.8
8.1
Thermal Shock Resistance, points 17
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.1 to 0.3
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 0
11.5 to 14.5
Copper (Cu), % 62.3 to 71.3
0
Iron (Fe), % 0.25 to 1.5
82.5 to 88.4
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 28 to 32
0 to 0.6
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Residuals, % 0 to 0.5
0