MakeItFrom.com
Menu (ESC)

C96400 Copper-nickel vs. EN 1.3558 Steel

C96400 copper-nickel belongs to the copper alloys classification, while EN 1.3558 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96400 copper-nickel and the bottom bar is EN 1.3558 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 51
80
Tensile Strength: Ultimate (UTS), MPa 490
770

Thermal Properties

Latent Heat of Fusion, J/g 240
240
Maximum Temperature: Mechanical, °C 260
490
Melting Completion (Liquidus), °C 1240
1810
Melting Onset (Solidus), °C 1170
1760
Specific Heat Capacity, J/kg-K 400
410
Thermal Conductivity, W/m-K 28
20
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.0
13
Electrical Conductivity: Equal Weight (Specific), % IACS 5.1
12

Otherwise Unclassified Properties

Base Metal Price, % relative 45
45
Density, g/cm3 8.9
9.3
Embodied Carbon, kg CO2/kg material 5.9
8.4
Embodied Energy, MJ/kg 87
130
Embodied Water, L/kg 280
90

Common Calculations

Stiffness to Weight: Axial, points 8.6
12
Stiffness to Weight: Bending, points 19
21
Strength to Weight: Axial, points 15
23
Strength to Weight: Bending, points 16
20
Thermal Diffusivity, mm2/s 7.8
5.3
Thermal Shock Resistance, points 17
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0.7 to 0.8
Chromium (Cr), % 0
3.9 to 4.3
Copper (Cu), % 62.3 to 71.3
0 to 0.3
Iron (Fe), % 0.25 to 1.5
73.7 to 77.6
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0 to 0.4
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 28 to 32
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.020
0 to 0.015
Tungsten (W), % 0
17.5 to 19
Vanadium (V), % 0
1.0 to 1.3
Residuals, % 0 to 0.5
0