MakeItFrom.com
Menu (ESC)

C96400 Copper-nickel vs. EN 1.4361 Stainless Steel

C96400 copper-nickel belongs to the copper alloys classification, while EN 1.4361 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96400 copper-nickel and the bottom bar is EN 1.4361 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 25
43
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 51
75
Tensile Strength: Ultimate (UTS), MPa 490
630
Tensile Strength: Yield (Proof), MPa 260
250

Thermal Properties

Latent Heat of Fusion, J/g 240
350
Maximum Temperature: Mechanical, °C 260
940
Melting Completion (Liquidus), °C 1240
1370
Melting Onset (Solidus), °C 1170
1330
Specific Heat Capacity, J/kg-K 400
490
Thermal Conductivity, W/m-K 28
14
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 5.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 45
19
Density, g/cm3 8.9
7.6
Embodied Carbon, kg CO2/kg material 5.9
3.6
Embodied Energy, MJ/kg 87
52
Embodied Water, L/kg 280
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
220
Resilience: Unit (Modulus of Resilience), kJ/m3 250
160
Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15
23
Strength to Weight: Bending, points 16
21
Thermal Diffusivity, mm2/s 7.8
3.7
Thermal Shock Resistance, points 17
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0 to 0.015
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 62.3 to 71.3
0
Iron (Fe), % 0.25 to 1.5
58.7 to 65.8
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 28 to 32
14 to 16
Niobium (Nb), % 0.5 to 1.5
0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
3.7 to 4.5
Sulfur (S), % 0 to 0.020
0 to 0.010
Residuals, % 0 to 0.5
0