MakeItFrom.com
Menu (ESC)

C96400 Copper-nickel vs. EN 1.4615 Stainless Steel

C96400 copper-nickel belongs to the copper alloys classification, while EN 1.4615 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C96400 copper-nickel and the bottom bar is EN 1.4615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 25
50
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 51
76
Tensile Strength: Ultimate (UTS), MPa 490
500
Tensile Strength: Yield (Proof), MPa 260
200

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 260
840
Melting Completion (Liquidus), °C 1240
1400
Melting Onset (Solidus), °C 1170
1360
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 5.1
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 45
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.9
2.8
Embodied Energy, MJ/kg 87
40
Embodied Water, L/kg 280
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
200
Resilience: Unit (Modulus of Resilience), kJ/m3 250
99
Stiffness to Weight: Axial, points 8.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15
18
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 7.8
4.1
Thermal Shock Resistance, points 17
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 62.3 to 71.3
2.0 to 4.0
Iron (Fe), % 0.25 to 1.5
63.1 to 72.5
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
7.0 to 9.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 28 to 32
4.5 to 6.0
Niobium (Nb), % 0.5 to 1.5
0
Nitrogen (N), % 0
0.020 to 0.060
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.010
Residuals, % 0 to 0.5
0