MakeItFrom.com
Menu (ESC)

C96400 Copper-nickel vs. EN 1.4869 Casting Alloy

C96400 copper-nickel belongs to the copper alloys classification, while EN 1.4869 casting alloy belongs to the nickel alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C96400 copper-nickel and the bottom bar is EN 1.4869 casting alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
210
Elongation at Break, % 25
5.7
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 51
80
Tensile Strength: Ultimate (UTS), MPa 490
540
Tensile Strength: Yield (Proof), MPa 260
310

Thermal Properties

Latent Heat of Fusion, J/g 240
330
Maximum Temperature: Mechanical, °C 260
1200
Melting Completion (Liquidus), °C 1240
1450
Melting Onset (Solidus), °C 1170
1390
Specific Heat Capacity, J/kg-K 400
460
Thermal Conductivity, W/m-K 28
10
Thermal Expansion, µm/m-K 15
13

Otherwise Unclassified Properties

Base Metal Price, % relative 45
70
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 5.9
7.7
Embodied Energy, MJ/kg 87
110
Embodied Water, L/kg 280
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
26
Resilience: Unit (Modulus of Resilience), kJ/m3 250
230
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 15
18
Strength to Weight: Bending, points 16
17
Thermal Diffusivity, mm2/s 7.8
2.6
Thermal Shock Resistance, points 17
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0.45 to 0.55
Chromium (Cr), % 0
24 to 26
Cobalt (Co), % 0
14 to 16
Copper (Cu), % 62.3 to 71.3
0
Iron (Fe), % 0.25 to 1.5
11.4 to 23.6
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 28 to 32
33 to 37
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
1.0 to 2.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Tungsten (W), % 0
4.0 to 6.0
Residuals, % 0 to 0.5
0