MakeItFrom.com
Menu (ESC)

C96400 Copper-nickel vs. EN 1.6368 Steel

C96400 copper-nickel belongs to the copper alloys classification, while EN 1.6368 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96400 copper-nickel and the bottom bar is EN 1.6368 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 25
18
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 51
73
Tensile Strength: Ultimate (UTS), MPa 490
660 to 690
Tensile Strength: Yield (Proof), MPa 260
460 to 490

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 260
410
Melting Completion (Liquidus), °C 1240
1460
Melting Onset (Solidus), °C 1170
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 28
40
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 5.1
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 45
3.4
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 5.9
1.7
Embodied Energy, MJ/kg 87
22
Embodied Water, L/kg 280
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
580 to 650
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15
23 to 24
Strength to Weight: Bending, points 16
21 to 22
Thermal Diffusivity, mm2/s 7.8
11
Thermal Shock Resistance, points 17
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.015 to 0.040
Carbon (C), % 0 to 0.15
0 to 0.17
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 62.3 to 71.3
0.5 to 0.8
Iron (Fe), % 0.25 to 1.5
95.1 to 97.2
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 28 to 32
1.0 to 1.3
Niobium (Nb), % 0.5 to 1.5
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0.25 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.010
Residuals, % 0 to 0.5
0