MakeItFrom.com
Menu (ESC)

C96400 Copper-nickel vs. EN 1.7230 Steel

C96400 copper-nickel belongs to the copper alloys classification, while EN 1.7230 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C96400 copper-nickel and the bottom bar is EN 1.7230 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Elongation at Break, % 25
11 to 12
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 51
73
Tensile Strength: Ultimate (UTS), MPa 490
720 to 910
Tensile Strength: Yield (Proof), MPa 260
510 to 740

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 260
420
Melting Completion (Liquidus), °C 1240
1460
Melting Onset (Solidus), °C 1170
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 28
44
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.0
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 5.1
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 45
2.4
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 5.9
1.5
Embodied Energy, MJ/kg 87
20
Embodied Water, L/kg 280
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
79 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 250
700 to 1460
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15
26 to 32
Strength to Weight: Bending, points 16
23 to 27
Thermal Diffusivity, mm2/s 7.8
12
Thermal Shock Resistance, points 17
21 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.15
0.3 to 0.37
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 62.3 to 71.3
0
Iron (Fe), % 0.25 to 1.5
96.7 to 98.3
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0.5 to 0.8
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 28 to 32
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.030
Residuals, % 0 to 0.5
0