MakeItFrom.com
Menu (ESC)

C96400 Copper-nickel vs. Grade Ti-Pd18 Titanium

C96400 copper-nickel belongs to the copper alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C96400 copper-nickel and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
110
Elongation at Break, % 25
17
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 51
40
Tensile Strength: Ultimate (UTS), MPa 490
710
Tensile Strength: Yield (Proof), MPa 260
540

Thermal Properties

Latent Heat of Fusion, J/g 240
410
Maximum Temperature: Mechanical, °C 260
330
Melting Completion (Liquidus), °C 1240
1640
Melting Onset (Solidus), °C 1170
1590
Specific Heat Capacity, J/kg-K 400
550
Thermal Conductivity, W/m-K 28
8.2
Thermal Expansion, µm/m-K 15
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 5.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 5.1
2.7

Otherwise Unclassified Properties

Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 5.9
41
Embodied Energy, MJ/kg 87
670
Embodied Water, L/kg 280
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1380
Stiffness to Weight: Axial, points 8.6
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 15
44
Strength to Weight: Bending, points 16
39
Thermal Diffusivity, mm2/s 7.8
3.3
Thermal Shock Resistance, points 17
52

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.15
0 to 0.1
Copper (Cu), % 62.3 to 71.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0.25 to 1.5
0 to 0.25
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 28 to 32
0 to 0.050
Niobium (Nb), % 0.5 to 1.5
0
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0 to 0.5
0 to 0.4